

## RETURNS TO COMPUTER USE IN BANGLADESH: AN ECONOMETRIC ANALYSIS

Presented by
Syed Yusuf Saadat




# Computer ownership and computer use (in percentage) 



Wages
Region Barishal
Chattogram
Dhaka Khulna
Rajshahi
Rangpur
Sylhet
Rural
Urban National

Never used computer (in BDT)

Used computer (in BDT)

Wage differential (in \%)
National 10,812

Structural Change

## Developed Economy




Urban Industrial Sector


## Sector-wise employment

(as percentage of total employment) in Bangladesh (1991-2017)



Theoretical Framework

## Dynamics of Labour Market of Bangladesh



Beveridge Curves for Unskilled and Skilled Labour Markets


## Labour Market for Workers with Computer Skills



LITERATURE REVIEW

40 per cent of the returns to education could be attributed to the propagation of computer use. (Krueger, 1993)

Spread of computer technology may explain 30 to 50 per cent of the increase in the rate of growth of the wage of skilled workers. (Autor, et al., 1996)

Use of white collar tools yielded a wage premium, whilst the use of blue collar tools resulted in a wage penalty. (DiNardo \& Pischke, 1997)

Men who used computers in the year 2000 earned 5 per cent more, whilst women who used computers in the year 2000 earned 14 per cent more. (Dolton \& Makepeace, 2004)

## Returns to Computer Use in Previous Studies

| Author | Year | Country | Returns to computer use |
| :---: | :---: | :---: | :---: |
| Alan B. Krueger | 1993 | United States of America | 10\% to 15\% |
| David Autor, Lawrence F. Katz, Alan B. Krueger | 1984 | United States of America | 17\% |
| David Autor, Lawrence F. Katz, Alan B. Krueger | 1989 | United States of America | 19\% |
| David Autor, Lawrence F. Katz, Alan B. Krueger | 1993 | United States of America | 20\% |
| John E. DiNardo, Jörn-Steffen Pischke | 1979 | West Germany | 11\% |
| John E. DiNardo, Jörn-Steffen Pischke | 1985-1986 | West Germany | 16\% |
| John E. DiNardo, Jörn-Steffen Pischke | 1991-1992 | West Germany | 17\% |
| Barton Hughes Hamilton | 1980 | United States of America | 13\% to 25\% |
| Peter Dolton, Gerry Makepeace | $\begin{aligned} & 1991 \text { to } \\ & 2000 \end{aligned}$ | United Kingdom | 14\% for men; 9\% for women |



## Cross sectional data

## Labour

 Force

## Sampling Strategy



## Sample Size Calculation Formula

$$
n=\left[\frac{(1-p)}{p} *\left(\frac{z\left(\frac{\alpha}{2}\right)}{r}\right)^{2}\right] * \operatorname{deff}
$$

where, $\mathrm{p} \quad=$ apriori proportion of the required characteristics in the population $\mathrm{z}\left(\frac{\alpha}{2}\right)=$ value of the standard normal variate allowing $100(1-\alpha) \% \mathrm{p}$ confidence
$\mathrm{r} \quad=$ rate of allowable margin of error
$\mathrm{N} \quad=$ population size
deff = design effect used in complex surveys using multistage cluster sampling
And assuming,

| $\alpha$ | $=0.005$ |
| :--- | :--- |
| deff | $=2$ |
| $p$ | $=0.046$ (from Labour Force Survey 2010) |

## Variables

Variable

## lnwage

 educationDefinition
natural log of weekly wage in cash and kind from both primary and secondary job
years of schooling up to 12 years

$$
\begin{array}{ll}
1=\text { class-I } & 7=\text { class-VII } \\
2=\text { class-II } & 8=\text { class-VIII } \\
3=\text { class-III } & 9=\text { class-IX } \\
4=\text { class-IV } & 10=\text { class X } \\
5=\text { class-V } & 11=\text { SSC } \\
6=\text { class-VI } & 12=\text { HSC }
\end{array}
$$

$$
\text { experience } \quad \text { potential experience; }(\text { experience }=\text { [age] }- \text { [education] }- \text { [6] })
$$

$$
\text { experience } \left.^{2} \quad \text { squared potential experience term; (experience }{ }^{2}=\text { experience }^{*} \text { experience }^{2}\right)
$$

computer use dummy;
computer $=1$ if ever used computer
computer $=0$ if never used computer
total number of hours worked per week at both primary and secondary job
total amount of land owned by households, measured in acres
marital status dummy;
married $=1$ if currently married
married $=0$ if currently not married
number of children aged less than 6 years
Consumer price index (CPI);
$\mathrm{CPI}=183.90$ if rural, $\mathrm{CPI}=177.71$ if urban


## Labour force participation model specification

$$
\ln \left(W_{i}^{*}\right)=\beta_{0}+\beta_{1} h_{i}+\beta_{2} A i+\beta_{3} M_{i}+\beta_{4} K_{i}+\beta_{5} P_{i}+\varepsilon_{i}(1)
$$

where,

| $\ln \left(\mathrm{W}^{*}\right)$ | $=$ |
| :--- | :--- |
|  | natural log of latent wage; $\mathrm{W}^{*}=1$ if $\mathrm{W}>0$ <br> (employment indicator) |
| h | $=\quad$ hours of work |
| A | $=$ |
| M | assets owned by the household |
| K | $=$ |
| P | marital status dummy variable |

## Market wage model specification

$\ln \left(W_{i}\right)=b_{0}+b_{1} S_{i}+b_{2} E_{i}+b_{3} E_{i}^{2}+b_{4} C_{i}+u_{i}(2)$
where,
$\ln \left(\mathrm{W}_{\mathrm{i}}\right)=$ natural logarithm of market wage rate
$\mathrm{S}=\quad$ number of years of schooling
$\mathrm{E}=$ potential labour market experience
$\mathrm{E}^{2} \quad=$ potential experience squared
C $\quad=$ computer use dummy variable


> Equation (2) suffers
> from unobserved heterogeneity or the problem of omitted variables.

The effect of these unobserved variables is captured through the error terms, and so the errors of the equation (4) are correlated with the independent variables.

The underlying reason behind this is the fact that the samples used for estimating these equations were not randomly collected.


Market wages are only observed for individuals who are working.


## Strict exogeneity assumption of the OLS model is

$E\left(\varepsilon_{i} \mid X\right)=0, \quad \forall i=1, \ldots, n$
Violation of the strict exogeneity assumption has several implications:

- $E\left(\varepsilon_{i}\right) \neq \mathbf{0}, \forall i=1, \ldots, n$
(The unconditional mean of the error term $(\varepsilon)$ is not zero.)
- $E\left(X_{j k}, \varepsilon_{i}\right) \neq 0, \forall i j k=1, \ldots, n$
(The independent variables (X) are not orthogonal to the errors ( $\varepsilon$ ) for all observations)
- $\operatorname{Cov}\left(X_{j k}, \varepsilon_{i}\right) \neq 0, \forall i j k=1, \ldots, n$
(The independent variables (X) and errors ( $\varepsilon$ ) are not uncorrelated for all observations.)

If the unobserved heterogeneity can be modelled separately, and the resulting information can be incorporated into the main model, then the problem can be resolved.

Heckman proposed that the specification of the original biased model could be improved by using the estimated values of the omitted variables as additional regressors.


Heckman outlined an ingenious two step estimation technique to correct sample selection bias (Heckman, 1979).

By doing so, the model could be estimated using ordinary least squares, without violating the strict exogeneity assumption.

The factors that influence an individual's decision to work are modelled by using a probit model. The general form of the sample likelihood function for this probit analysis is:

$$
\mathcal{L}=\prod_{i=1}^{T}\left[F\left(\phi_{i}\right)\right]^{1-d_{i}}\left[1-F\left(\phi_{i}\right)\right] d_{i}
$$

where, d is a random variable, which is equal to one if the dependent variable is observed and equal to zero if the dependent variable is not observed.

# Suppose there is a sample of T individuals, K of who work and T-K who do not work. 

Then, the aforementioned likelihood function becomes:
$\mathcal{L}=\prod_{i=1}^{K} j\left(h_{i}, \ln \left(W_{i}\right) \mid\left(W_{i}>W_{i}^{*}\right)_{h=0}\right) \cdot \operatorname{pr}\left(\left[W_{i}>W_{i}^{*}\right]_{h=0}\right) \times \prod_{i=K+1}^{T} \operatorname{pr}\left(\left[W_{i}<W_{i}^{*}\right]_{h=0}\right)$

Inverse Mills Ratio $=\frac{\text { standard normal probability distribution function }}{\text { standard normal cumulative distribution function }}$

$$
\lambda_{i}=\frac{f\left(\phi_{i}\right)}{1-\boldsymbol{F}\left(\phi_{i}\right)}
$$

where,
$\lambda=$ inverse Mills ratio
$\mathrm{f}=$ standard normal probability distribution function of the selection equation
$\mathrm{F}=$ standard normal cumulative distribution function of the selection equation.

The Inverse Mills Ratio can be defined as:

$$
\lambda=j\left(h_{i}, \ln \left(W_{i}\right) \left\lvert\,\left(W_{i}^{*}<W_{i}\right)_{h=0}=\frac{n\left(h_{i}, \ln \left(W_{i}\right)\right)}{\operatorname{pr}\left(\left[W_{i}>W_{i}^{*}\right]_{h=0}\right)} \because \varepsilon_{i}\right., u_{i} \sim N(0)\right.
$$

Using this Inverse Mills Ratio in the original likelihood function simplifies to:

$$
\mathcal{L}=\prod_{i=1}^{K} n\left(h_{i}, \ln \left(W_{i}\right)\right) \prod_{i=K+1}^{T} \operatorname{pr}\left(\left[W_{i}<W_{i}^{*}\right]_{h=0}\right)
$$

Maximizing this likelihood function with respect to the parameters of the model, including the variances and covariances of the errors in equations (1) and (2) yields consistent, asymptotically unbiased, and efficient parameter estimates which are asymptotically normally distributed.

Thus, the selection bias corrected now becomes:

$$
\ln \left(W_{i}\right)=b_{0}+b_{1} S_{i}+b_{2} E_{i}+b_{3} \lambda_{i}+u_{i}(3)
$$

Augmenting the basic model with the squared experience term and computer use dummy variable gives:

$$
\ln \left(W_{i}\right)=b_{0}+b_{1} S_{i}+b_{2} E_{i}+b_{3} E_{i}^{2}+b_{4} C_{i}+b_{5} \lambda_{i}+u_{i}(4)
$$

where, $\boldsymbol{\lambda}$ is the inverse Mills ratio


| $\ln \left(W_{i}\right)$ | $+b_{1} s_{i}+b_{2} E_{i}$ | $+b_{4} C_{i}+u_{i}(2)$ |
| :---: | :---: | :---: |
| Model without computer |  | Model with computer |
| Regression | OLS | OLS |
| Variable | lnwage | lnwage |
| education | $0.0345818^{* * *}$ | 0.0296701*** |
|  | (0.0008388) | (0.00087) |
| experience | $0.020699^{* * *}$ | $0.0213602^{* * *}$ |
|  | (0.0006296) | (0.0006244) |
| experiencesq | -0.0003208*** | -0.0003276*** |
|  | (0.0000124) | (0.0000123) |
| computer |  | $0.1928568{ }^{* * *}$ |
|  |  | (0.010153) |
| Constant | $7.29877^{* * *}$ | $7.312575^{* * *}$ |
|  | (0.0095537) | (0.0094888) |
| F stat | 928.38 | 800.22 |
| Prob > F | 0.0000 | 0.0000 |
| R-squared | 0.1324 | 0.1492 |
| Adj R-squared | 0.1322 | 0.1490 |

## Ramsey Regression Specification Error Test (RESET)

Null hypothesis = model is correctly specified Alternative hypothesis = model is incorrectly specified

Decision rule: if $\mathrm{p}<0.05$ then the model is incorrectly specified

| Statistic | Model without computer <br> Test statistic | Model with computer |
| :--- | :---: | :---: |
|  | (Probability) | Test statistic |
| F | 588.80 | (Probability) |

Note: (i) $\mathrm{H}_{0}$ : there is no omitted variable, $\mathrm{H}_{\mathrm{A}}$ : there is at least one omitted variable

## Interpretation: The model is incorrectly specified

## Link Test

- Link Test is based on the idea that if a regression is properly specified, one should not be able to find any additional independent variables that are significant except by chance.
- Link Test creates two new variables, the variable of prediction, and the variable of squared prediction.
- We wouldn't expect the squared prediction to be a significant predictor if our model is specified correctly.

| Variables | Model without computer lnwage | Model with computer lnwage |
| :---: | :---: | :---: |
| Prediction | $51.53402^{* * *}$ | 32.39009*** |
|  | (1.67844) | (1.341881) |
| Squared prediction | -3.249214*** | -2.013056*** |
|  | (0.107913) | (0.086048) |
| Constant | -196.4245*** | -122.3259*** |
|  | (6.525249) | (5.230572) |
| F stat. | 1915.11 | 1922.25 |
| Prob > F | 0.0000 | 0.0000 |
| R-squared | 0.1734 | 0.1740 |
| Adj Rsquared | 0.1733 | 0.1739 |

Note: (i) Standard errors in parentheses; (ii) ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

## Interpretation: The model is incorrectly specified

## Variance Inflation Factor

Variance inflation factor measures the linear association between an independent variable and all other independent variables.
Decision rule:
VIF > 10 : perfect multicollinearity is highly likely
$5<$ VIF < 10 : perfect multicollinearity is somewhat likely
$\mathrm{o}<\mathrm{VIF}<5$ : perfect multicollinearity is unlikely

|  | Model without computer |  | Model with computer |  |
| :--- | :---: | :---: | :---: | :---: |
| Variables | VIF | 1/VIF | VIF | 1/VIF |
| education | 1.02 | 0.985135 | 1.11 | 0.898111 |
| experience | 10.00 | 0.100022 | 10.03 | 0.099712 |
| experience ${ }^{\text {2 }}$ | 9.97 |  | 0.100328 | 9.98 |
| computer |  |  | 1.11 | 0.100242 |
| Mean VIF |  | 6.99 |  |  |

Note: (i) VIF > 10 : perfect multicollinearity is highly likely; $5<$ VIF $<10$ : perfect multicollinearity is somewhat likely; $0<$ VIF $<5$ : perfect multicollinearity is unlikely
Interpretation: Perfect multicollinearity is somewhat likely

## Breusch-Pagan and Cook-Weisberg Test

Null hypothesis = homoskedastic, Alternative hypothesis = heteroskedaticity

Decision rule: if $\mathrm{p}<0.05$ then there is heteroskedasticity.

|  | Model without computer <br> Statistic <br> Test statistic <br> (Probability) | Model with computer <br> Test statistic |
| :--- | :---: | :---: |
| chi $^{\mathbf{2}}$ | 107.87 | (Probability) |
| F | $(0.0000)$ | 118.51 |
|  | 55.13 | $(0.0000)$ |
|  | $(0.0000)$ | 60.59 |

Note: (i) $\mathrm{H}_{\mathrm{o}}$ : errors have are homoscedastic, $\mathrm{H}_{\mathrm{A}}$ : errors are not homoscedastic; (ii) Breusch-Pagan (1979) and Cook-Weisberg (1983) test for heteroskedasticity assumes that the heteroskedasticity is a linear function of the independent variables.

Interpretation: There is heteroskedasticity

## White Test

Breusch-Pagan (1979) and Cook-Weisberg (1983) test for heteroskedasticity assumes that the heteroskedasticity is a linear function of the independent variables.

The White test allows the heteroskedasticity process to be a function of one or more independent variables. It allows the independent variable to have a non-linear and interactive effect on the error variance.

Null hypothesis $=$ homoscedastic; Alternative hypothesis $=$ heteroskedaticity Decision rule: if $\mathrm{p}<0.05$ then there is heteroskedasticity.

| Statistic | Model without computer Test statistic (Probability) | Model with computer Test statistic (Probability) |
| :---: | :---: | :---: |
| $\mathbf{c h i ~}^{2}$ | $\begin{gathered} 958.62 \\ (0.0000) \\ \hline \end{gathered}$ | $\begin{gathered} 962.88 \\ (0.0000) \end{gathered}$ |

Interpretation: There is heteroskedasticity

## Graphical Check of Heteroskedasticity




## Normal PP Plot, Normal QQ Plot, and Distribution of Residuals for OLS Model without Computer



## Normal PP Plot, Normal QQ Plot, and Distribution of Residuals for OLS Model with Computer



## Shapiro Wilk Test

Null hypothesis = errors normal
Alternative hypothesis = errors not normal
Decision rule: If $p$ value $<0.05$ then reject null hypothesis that errors are normal.
If $p$ value $>0.05$ then cannot reject null hypothesis that errors are normal.

| Variable | Model without computer <br> Residual | Model with computer <br> Residual |
| :--- | :---: | :---: |
| $\mathbf{W}$ | 0.98491 | 0.98579 |
| $\mathbf{V}$ | 125.125 | 117.833 |
| $\mathbf{z}$ | 13.125 | 12.962 |
| Prob $>\mathbf{z}$ | 0.00000 | 0.00000 |

## Graphical Check of Outliers in OLS Models

Model without computer



0 ( experiencesq | X)
e
e( experiencesq |X
eot -.00032079, se $=00001241, t=-25.86$

Model with computer




O 500100015002000200
e( experiencesq |X)
coef $=-.00032764$, se $=.00001229$


## Summary of Post-estimation Diagnostic Tests

| Test | Description | Result |
| :--- | :--- | :--- |
| Ramsey Regression <br> Specification Error Test | Test of model specification | Model is incorrectly <br> specified; there is at least one <br> omitted variable |
| Link Test | Test of model specification | Model is incorrectly specified |
| Variance Inflation Factor | Test of multicollinearity | Perfect multicollinearity is <br> somewhat likely |
| Breusch-Pagan (1979) and <br> Cook-Weisberg (1983) Test | Test of heteroskedasticity | There is heteroskedasticity |
| White Test | Test of heteroskedasticity | There is heteroskedasticity |
| Shapiro Wilk Test | Test of normality of errors | The errors are not normally |

## Results from Heckman Two-step Estimation

| Regression <br> Variable | Model without computer |  | Model with computer |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Probit <br> lnwage | Heckman lnwage | Probit <br> lnwage | Heckman lnwage |
| education |  | $\begin{gathered} 0.0343627^{* * *} \\ (0.0010397) \end{gathered}$ |  | $\begin{gathered} 0.0302509^{* * *} \\ (0.0010727) \end{gathered}$ |
| experience |  | $\begin{aligned} & 0.0198216^{* * *} \\ & (0.0007809) \end{aligned}$ |  | $\begin{aligned} & 0.0203444^{* * *} \\ & (0.0007734) \end{aligned}$ |
| experience ${ }^{2}$ |  | $\begin{gathered} -0.0002861^{1 * *} \\ (0.0000151) \end{gathered}$ |  | $\begin{gathered} -0.0002924^{* * *} \\ (0.000015) \end{gathered}$ |
| computer |  |  |  | $\begin{gathered} 0.1702658^{* * *} \\ (0.0123785) \end{gathered}$ |
| hours | $\begin{aligned} & 0.0107224^{* * *} \\ & (0.0005879) \end{aligned}$ |  | $\begin{gathered} 0.0107224^{* * *} \\ (0.0005879) \end{gathered}$ |  |
| assets | $\begin{gathered} -0.0003627^{* * *} \\ (0.0000306) \end{gathered}$ |  | $\begin{gathered} -0.0003627^{* * *} \\ (0.0000306) \end{gathered}$ |  |
| married | $\begin{gathered} -0.3196878 * * * \\ (0.0171752) \end{gathered}$ |  | $\begin{gathered} -0.3196878^{* * *} \\ (0.0171752) \end{gathered}$ |  |
| children | $\begin{gathered} -0.0234653^{* *} \\ (0.00963) \end{gathered}$ |  | $\begin{gathered} -0.0234653^{* *} \\ (0.00963) \end{gathered}$ |  |
| CPI | $\begin{gathered} -0.041563^{* * *} \\ (0.00241) \end{gathered}$ |  | $\begin{aligned} & 6.955875^{* * *} \\ & (0.4395531) \end{aligned}$ |  |
| lambda |  | $\begin{aligned} & -0.1805037 \\ & (0.0128445) \end{aligned}$ |  | $\begin{gathered} -0.1558748 \\ (0.0133838) \end{gathered}$ |
| Constant | $\begin{aligned} & 6.955875^{* * *} \\ & (0.4395531) \end{aligned}$ | $\begin{gathered} 7.480404^{* * *} \\ (0.0181366) \end{gathered}$ | $\begin{aligned} & 6.955875^{* * *} \\ & (0.4395531) \end{aligned}$ | $\begin{aligned} & 7.467818^{* * *} \\ & (0.0182261) \end{aligned}$ |
| LR chi ${ }^{2}$ | 1730.34 |  | 1730.34 |  |
| Wald chi ${ }^{2}$ |  | 1794.51 |  | 2030.21 |
| Prob > chi ${ }^{2}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

## Summary of Results from Heckman Two-step Estimation



## Threshold Level of Experience

Let us recall that our model specification was as follows:

$$
\ln \left(W_{i}\right)=b_{0}+b_{1} S_{i}+b_{2} E_{i}+b_{3} E_{i}^{2}+b_{4} C_{i}+b_{5} \lambda_{i}+u_{i}(2)
$$

Substituting the coefficients from the Heckman model with computer use, we get

$$
{\left.\widehat{\ln \left(W_{i}\right.}\right)=7.467818+0.0302509 S_{i}+0.0203444 E_{i}+(-0.0002924) E_{i}^{2}+0.1702658 C_{i}+(-0.1558748) \lambda_{i}+u_{i} .}^{2}
$$

Differentiating the equation with respect to experience we get

$$
\frac{\partial W}{\partial E}=0.0203444-0.0005848 E
$$

At the turning point the first derivative is zero, so we get

$$
\begin{gathered}
0.0203444-0.0005848 E=0 \\
-0.0005848 E=-0.0203444 \\
E=\frac{0.0203444}{0.0005848} \\
E=34.78864569
\end{gathered}
$$

Thus wages are maximized at 34 years of potential experience. The second derivative is negative, further confirming the inverted $U$ shaped nature of the relationship.

## Returns to education, experience, and computers


$\rightarrow$ Returns to education (cumulative) $\rightleftharpoons$-Returns to experience (cumulative) $\rightleftharpoons$ Returns to computer use


Gaps in the labour market of Bangladesh need to be bridged urgently

## Structural

 unemployment is now set to become the next big development challenge for Bangladesh
## Recommendations

## STUDENTS: invest time in learning computer skills

TEACHERS: increase the use of computers in the classroom

EMPLOYERS: focus on workers' computer skills for capacity building

GOVERNMENTS:
allocate government resources for computer training

##  <br> THANKYOU



