RETURNS TO COMPUTER USE IN BANGLADESH: AN ECONOMETRIC ANALYSIS

Presented by Syed Yusuf Saadat

Draft; not for citation Young Scholars Seminar Series Centre for Policy Dialogue Dhaka: 20 November 2019

Ч 9 + 6 N N < (▼ > +	\$#+2? *H2? -{05,16>	Sse2∨ti S4&€ilL	©⊥∞∞⊎∞⊅00 ©⊥∞∞⊎∞∞⊥0		ь о м н ц	-0 N 8 E	< K K 0 X 0 0	L 7 · P E P U .	ANSI08-0r
		IN	AR		DU	JC'			N	
04 ;b h	та 	L L1	3% 0?7 gHh	〕94 × 94 × ● # # Z J K ▲ X [□]	T J J O raft; not for citation	>		C h G n e a X M	Q > X © → V H →	

P 11

÷

А.

Draft; not for citation

Computer ownership and computer use (in percentage)

Source: Bangladesh Computer Use and Access Survey 2013, Bangladesh Bureau of Statistics (BBS)

Draft; not for citation

Wages	Never used computer	Used computer (in BDT)	Wage differential
Region	(in BDT)		(in %)
Barishal	11,343	15,731	38.68
Chattogram	11,217	14,358	28.00
Dhaka	10,881	14,788	35.91
Khulna	10,709	13,122	22.53
Rajshahi	10,620	13,425	26.41
Rangpur	10,264	13,551	32.02
Sylhet	10,320	13,401	29.85
Rural	10,287	12,925	25.64
Urban	11,254	14,434	28.26
National	10,812	14,162	30.98

Source: Bangladesh Labour Force Survey 2013 and Bangladesh Computer Use and Access Survey 2013, Bangladesh Bureau of Statistics (BBS)

Agriculture - Industry - Services

Draft; not for citation

Şr imes G @ 14 С X b 0 T g \mathbf{E} + 6 N N < 0 M +L2ł \mathbf{PI} s 2 \mathbb{L} ? 0, rt © ∞ ty 0, –, 0 X 4 < & fi 0 D ¢ e i m 8 L \mathbf{P} чo A 57

RETICAL FRAMEWORK

	-	L.					- Y V			L.	
$^{-4}$		11		89		- 1	$(\circ$) [0	
E.			2	~ 4		36		E	h)	
\mathbf{b}			*	2 ,		C	e	E.	6		
h			*	7 [#	0	q		n		
			5.	q {	#	e.					
		d		ΤE	z		0	W V	e		
		=		h >	J T	÷.	1	$z = \mathbf{Y}$	a	8	
	141	s –			$\mathbf{K} \cup$	q		I #	2-0	\times	
	÷ ÷	+			$^{\circ}$ d	-		1 {	1-1	1	
	Ē.	a] 💦 Draft; n	ot for citation		K		q	
	p.				1 Y 1			4			

Dynamics of Labour Market of Bangladesh

Source: Authors' illustration based on Bleakley & Fuhrer (1997).

Note: i) For simplicity of exposition, formal employment in agriculture sector is not shown.

Beveridge Curves for Unskilled and Skilled Labour Markets

Labour Market for Workers with Computer Skills

g \mathbb{R} 0 $\mathbf{c} imes$ 14 +6 L2Ł \mathbf{M} Т s 2 \mathbf{N} \mathbb{L} 2 0 Ş 4 < \times \mathbf{M} $\stackrel{\mathbb{Z}}{\sim}$ A 00 00 &£ \mathbf{d} \mathbf{d} ¢ e i m 8. L t \mathbf{Q} P $\mathbf{u} \mathbf{O}$ S <u>a - 50</u> ERATURE $\mathbf{4}$ 0 \odot 111 $\frac{i}{\mathbf{b}}$ ~ 4 \mathbf{h} 0 ä 0 Sc. g Ł $T \to$ Z. 0 h > \mathbf{J} × \mathbf{Y} 0 ₽ 26 \mathbf{q} $^{\circ}$ d £ \mathbf{M} Draft; not for citation g a \mathbf{A} P 11 - N/C

b

0

7

Ş.

10

 $imes \mathbf{G}$

a

40 per cent of the returns to education could be attributed to the propagation of computer use. (Krueger, 1993)

Spread of computer technology may explain 30 to 50 per cent of the increase in the rate of growth of the wage of skilled workers. (Autor, et al., 1996)

Use of white collar tools yielded a wage premium, whilst the use of blue collar tools resulted in a wage penalty. (DiNardo & Pischke, 1997)

Men who used computers in the year 2000 earned 5 per cent more, whilst women who used computers in the year 2000 earned 14 per cent more. (Dolton & Makepeace, 2004)

Returns to Computer Use in Previous Studies

Author	Year	Country	Returns to computer use
Alan B. Krueger	1993	United States of America	10% to 15%
David Autor, Lawrence F. Katz, Alan B. Krueger	1984	United States of America	17%
David Autor, Lawrence F. Katz, Alan B. Krueger	1989	United States of America	19%
David Autor, Lawrence F. Katz, Alan B. Krueger	1993	United States of America	20%
John E. DiNardo, Jörn-Steffen Pischke	1979	West Germany	11%
John E. DiNardo, Jörn-Steffen Pischke	1985-1986	West Germany	16%
John E. DiNardo, Jörn-Steffen Pischke	1991-1992	West Germany	17%
Barton Hughes Hamilton	1980	United States of America	13% to 25%
Peter Dolton, Gerry Makepeace	1991 to 2000	United Kingdom	14% for men; 9% for women Draft; not for citation

N + 6 N N < 🗸

g

Ş Ε M + L 2

 $\mathbb{L} \ \mathbb{P}$

XG Zs

e2∠f s4≤f

L

							A			
04 24 20 h	Ξ	r u) × − • * • (194, 1904, 1907	N 0 #	÷ + × ∪ O:	2 (0 Q)		о С Д Ю Д .	с (н
		/ d s	6	gi TE h>	# Z J T K J	ط ۲	2	! ₩∇ ; Y #	с — — — — — — — — — — — — — — — — — — —	<pre>< 0 ></pre>
	ų minit	+ a			`d ∢Draft; n	ot for citation		1 { K 4	й	a t

回 1 X ~ ~ ~ の 日 @ 2 Y ~ | ~ 0

 \mathbf{b}

141

0 T o X 0 U 1007 P = 07

 \mathbb{R}

Cross sectional data

All variables from LFS 2013, except CPI (which is from Bangladesh Bank)

Labour Force Survey Bangladesh 2013

Bangladesh Bureau of Statistics Statistics and Informatics Division Ministry of Planning

Sampling Strategy

Systematic random sampling of clusters of 24 households from each of the 1512 PSUs/EAs. 36,242 households are selected at this stage.

Random selection of PSUs/EAs from all of the 64 districts and 21 regional strata.

7 divisions: Barisal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, and Sylhet. 3 kinds of localities: City Corporation, Urban, and Rural.

1512 primary sampling units (primary sampling units) or enumeration areas (EAs). Each PSU/EA had approximately 80-120 households.

Draft; not for citation

Sample Size Calculation Formula

$$n = \left[\frac{(1-p)}{p} * \left(\frac{z\left(\frac{\alpha}{2}\right)}{r}\right)^2\right] * deff$$

where,

r

Ν

- p = apriori proportion of the required characteristics in the population
- $z\left(\frac{\alpha}{2}\right) =$ value of the standard normal variate allowing $100(1 \alpha)\%$ p confidence
 - = rate of allowable margin of error
 - = population size
- deff = design effect used in complex surveys using multistage cluster sampling

And assuming,

- $\alpha = 0.005$
- deff = 2
- p = 0.046 (from Labour Force Survey 2010)

Variables

Variable	Definition				
lnwage	natural log of weekly wage in cash and kind from both primary and secondary job				
education	years of schooling up to 12 years				
	1 = class-I	7 = class-VII			
	2 = class-II	8 = class-VIII			
	3 = class-III	9 = class-IX			
	4 = class-IV	10 = class X			
	5 = class-V	11 = SSC			
	6 = class-VI	12 = HSC			
experience	potential experience; (experience =	[age] – [education] – [6])			
experience ²	squared potential experience term; (experience ² = experience*experience)				
computer	computer use dummy;				
	computer = 1 if ever used computer	•			
	computer = 0 if never used comput	er			
hours	total number of hours worked per w	veek at both primary and secondary job			
assets	total amount of land owned by hou	seholds, measured in acres			
married	marital status dummy;				
	married = 1 if currently married				
	married = 0 if currently not married	d			
children	number of children aged less than 6	5 years			
CPI*	Consumer price index (CPI);		Draft		
*(Bangladesh Bank Data)	CPI = 183.90 if rural, CPI = 177.71 i	f urban	not for citation		

Pi 60 00 e i 5 L t CON IC

 $imes \mathbf{G}$

s 2

&£

4

Ľ

 \mathbb{L} 2

10

Ŋ

a

C

Ş

 \mathbf{b} \mathbf{h}

g

6

z

 \sim

8

a \mathbf{P} 11

* δe

9 $T \to$ h >

Z. \mathbf{J} K Jđ

0 e E. \mathbf{q} Draft; not for citation

ä

 \circ

b

0

1-1

Y Ū

240

М

9

1.00

₽

ſ

 \mathbb{R}

Д.

θœ

- 25

d d

 \leq

 \mathbf{K}

Labour force participation model specification

$$ln(W_{i}^{*}) = \beta_{0} + \beta_{1}h_{i} + \beta_{2}Ai + \beta_{3}M_{i} + \beta_{4}K_{i} + \beta_{5}P_{i} + \varepsilon_{i}$$
(1)

where,

- $ln(W^*) = natural log of latent wage; W^* = 1 if W > 0$ (employment indicator)
- h = hours of work
- A = assets owned by the household
- M = marital status dummy variable
- K = number of children aged less than six
- P = vector of goods prices; consumer price index

Market wage model specification

$$\ln(W_i) = b_0 + b_1 S_i + b_2 E_i + b_3 E_i^2 + b_4 C_i + u_i (2)$$

where,

Z 9 + 6 N 4 ~ (Şτ M + L 2 L ? - - - - - - - - - - - - -	Gse2 <fi S4⊗eilL</fi 	@C~ Q + 8 % 8 % + Q		H	Б 0 М 1 #	-Ω -> N ∎	K	O TH O X TH O	- 4 N 0 1 0 8 - 0 1 0 - 0 1 0 - 0 1 0 0 - 0 1 0 0 - 0 1 0 0 - 0 1 0 0 - 0 1 0 0 - 0 1 0 0 0 0	
04÷ЬК	- - - - - - - - - - - - - - - - - - -				Z J T K J C Z J J X Draft; no	t for citation) Chon eax M	РУ Ч Х х х Х Ч Эт		

Equation (2) suffers from unobserved heterogeneity or the problem of omitted variables.

The effect of these unobserved variables is captured through the error terms, and so the errors of the equation (4) are correlated with the independent variables.

The underlying reason behind this is the fact that the samples used for estimating these equations were not randomly collected.

Hence individuals who choose to work self-select themselves into the sample.

However, an individual's decision to work is not a random decision, but rather a rational choice.

Market wages are only observed for individuals who are working.

Draft; not for citation

Strict exogeneity assumption of the OLS model is $E(\varepsilon_i|X) = 0, \quad \forall i = 1, ..., n$

Violation of the strict exogeneity assumption has several implications:

• $E(\varepsilon_i) \neq 0, \forall i = 1, ..., n$

(The unconditional mean of the error term (ϵ) is not zero.)

• $E(X_{jk}, \varepsilon_i) \neq 0, \forall ijk = 1, ..., n$

(The independent variables (X) are not orthogonal to the errors (ε) for all observations)

• $COV(X_{jk}, \varepsilon_i) \neq 0, \forall ijk = 1, ..., n$

(The independent variables (X) and errors (ε) are not uncorrelated for all observations.)

not for citatio

If the unobserved heterogeneity can be modelled separately, and the resulting information can be incorporated into the main model, then the problem can be resolved.

Heckman proposed that the specification of the original biased model could be improved by using the estimated values of the omitted variables as additional regressors.

Heckman outlined an ingenious two step estimation technique to correct sample selection bias (Heckman, 1979).

By doing so, the model could be estimated using ordinary least squares, without violating the strict exogeneity assumption.

> Draft; not for citation

The factors that influence an individual's decision to work are modelled by using a probit model. The general form of the sample likelihood function for this probit analysis is:

$$\mathcal{L} = \prod_{i=1}^{T} [F(\boldsymbol{\phi}_i)]^{1-d_i} [1 - F(\boldsymbol{\phi}_i)] d_i$$

where, d is a random variable, which is equal to one if the dependent variable is observed and equal to zero if the dependent variable is not observed. Suppose there is a sample of T individuals, K of who work and T-K who do not work.

Then, the aforementioned likelihood function becomes:

$$\mathcal{L} = \prod_{i=1}^{K} j(h_i, \ln(W_i) | (W_i > W_i^*)_{h=0}) \cdot pr([W_i > W_i^*]_{h=0}) \times \prod_{i=K+1}^{T} pr([W_i < W_i^*]_{h=0})$$

Inverse Mills Ratio = $\frac{\text{standard normal probability distribution function}}{\text{standard normal cumulative distribution function}}$

$$\lambda_i = \frac{f(\boldsymbol{\phi}_i)}{1 - F(\boldsymbol{\phi}_i)}$$

where,

- λ = inverse Mills ratio
- f = standard normal probability distribution function of
- the selection equation
- F = standard normal cumulative distribution function of selection equation.

The Inverse Mills Ratio can be defined as:

$$\lambda = j(h_i, \ln(W_i) | (W_i^* < W_i)_{h=0} = \frac{n(h_i, \ln(W_i))}{pr([W_i > W_i^*]_{h=0})} \because \varepsilon_i, u_i \sim N(0)$$

Using this Inverse Mills Ratio in the original likelihood function simplifies to:

$$\mathcal{L} = \prod_{i=1}^{K} n(h_i, ln(W_i)) \prod_{i=K+1}^{T} pr([W_i < W_i^*]_{h=0})$$

Maximizing this likelihood function with respect to the parameters of the model, including the variances and covariances of the errors in equations (1) and (2) yields **consistent**, asymptotically **unbiased**, and **efficient** parameter estimates which are asymptotically normally distributed.

Thus, the selection bias corrected now becomes:

$$\ln(W_i) = b_0 + b_1 S_i + b_2 E_i + b_3 \lambda_i + u_i(3)$$

Augmenting the basic model with the squared experience term and computer use dummy variable gives:

$$\ln(W_i) = b_0 + b_1 S_i + b_2 E_i + b_3 E_i^2 + b_4 C_i + b_5 \lambda_i + u_i(4)$$

where, λ is the inverse Mills ratio

g \mathbf{N} $\stackrel{\mathbb{Z}}{\sim}$ ¢

 $\mathbf{4}$

í b

 \mathbf{h}

	11	
	d	
	=	
- 14	ş +	
Ē	a	

Ş.

15

M +L2

 \mathbb{L} ?

Sc.

g

imes G

s 2

4 <

δ£

0 ii

L

e

Ł

 $\mathbf{C} imes$

t \mathbf{Q}

 $\simeq 4$ Ł $T \to$ h >

 \mathbf{Z}_{i} J $^{\circ}$ d

0 0 \mathbf{q} Draft; not for citation - W.

ä 0 ×

0

1-1

Y ₽ £ д.

 \odot

 \mathbf{n} a 20 \mathbf{M}

5

g

0

 \mathbf{P} $\mathbf{u} \mathbf{O}$ a - 53

0 j T \mathbb{R} 0 \times \mathbf{d} \mathbf{d}

m 8

$$\ln(W_i) = b_0 + b_1 S_i + b_2 E_i + b_3 E_i^2 + b_4 C_i + u_i (2)$$

	Model without computer	Model with computer
Regression	OLS	OLS
Variable	lnwage	lnwage
education	0.0345818***	0.0296701***
	(0.0008388)	(0.00087)
experience	0.020699***	0.0213602***
	(0.0006296)	(0.0006244)
experiencesq	-0.0003208***	-0.0003276***
	(0.0000124)	(0.0000123)
computer		0.1928568***
		(0.010153)
Constant	7.29877***	7.312575***
	(0.0095537)	(0.0094888)
F stat	928.38	800.22
Prob > F	0.0000	0.0000
R-squared	0.1324	0.1492
Adj R-squared	0.1322	0.1490

Note: (i) Standard errors in parentheses (ii) *** p<0.01, ** p<0.05, * p<0.1

Ramsey Regression Specification Error Test (RESET)

Null hypothesis = model is correctly specified Alternative hypothesis = model is incorrectly specified

Decision rule: if p < 0.05 then the model is incorrectly specified

Statistic	Model without computer Test statistic	Model with computer Test statistic
	(Probability)	(Probability)
F	588.80	516.56
	(0.0000)	(0.0000)

Note: (i) H_0 : there is no omitted variable, H_A : there is at least one omitted variable

Interpretation: The model is incorrectly specified

Link Test

- Link Test is based on the idea that if a regression is properly specified, one should not be able to find any additional independent variables that are significant except by chance.
- Link Test creates two new variables, the variable of prediction, and the variable **Co** of squared prediction.
- We wouldn't expect the squared prediction to be a significant predictor if our model is specified correctly.

	Model without	Model with
	computer	computer
Variables	lnwage	lnwage
Prediction	51.53402***	32.39009***
	(1.67844)	(1.341881)
Squared	-3.249214***	-2.013056***
prediction		
	(0.107913)	(0.086048)
Constant	-196.4245***	-122.3259***
	(6.525249)	(5.230572)
F stat.	1915.11	1922.25
$\mathbf{Prob} > \mathbf{F}$	0.0000	0.0000
R-squared	0.1734	0.1740
Adj R-	0.1733	0.1739
squared		

Note: (i) Standard errors in parentheses; (ii) *** p<0.01, ** p<0.05, * p<0.1

Interpretation: The model is incorrectly specified

Variance Inflation Factor

Variance inflation factor measures the linear association between an independent variable and all other independent variables. Decision rule:

VIF > 10 : perfect multicollinearity is highly likely

- 5 < VIF < 10: perfect multicollinearity is somewhat likely
- o < VIF < 5 : perfect multicollinearity is unlikely

	Model with	out computer	Model with computer		
Variables	VIF	ı/VIF	VIF	1/VIF	
education	1.02	0.985135	1.11	0.898111	
experience	10.00	0.100022	10.03	0.099712	
experience ²	9.97	0.100328	9.98	0.100242	
computer			1.11	0.897545	
Mean VIF	6	.99	5	5.56	

Note: (i) VIF > 10 : perfect multicollinearity is highly likely; 5 < VIF < 10 : perfect multicollinearity is somewhat likely; 0 < VIF < 5 : perfect multicollinearity is unlikely

Interpretation: Perfect multicollinearity is somewhat likely

Breusch-Pagan and Cook-Weisberg Test

Null hypothesis = homoskedastic, Alternative hypothesis = heteroskedaticity

Decision rule: if p < 0.05 then there is heteroskedasticity.

	Model without computer	Model with computer		
Statistic	Test statistic	Test statistic		
	(Probability)	(Probability)		
chi ²	107.87	118.51		
	(0.0000)	(0.0000)		
F	55.13	60.59		
	(0.0000)	(0.0000)		

Note: (i) H_0 : errors have are homoscedastic, H_A : errors are not homoscedastic; (ii) Breusch-Pagan (1979) and Cook-Weisberg (1983) test for heteroskedasticity assumes that the heteroskedasticity is a linear function of the independent variables.

Interpretation: There is heteroskedasticity

White Test

Breusch-Pagan (1979) and Cook-Weisberg (1983) test for heteroskedasticity assumes that the heteroskedasticity is a linear function of the independent variables.

The White test allows the heteroskedasticity process to be a function of one or more independent variables. It allows the independent variable to have a non-linear and interactive effect on the error variance.

Null hypothesis = homoscedastic; Alternative hypothesis = heteroskedaticity Decision rule: if p < 0.05 then there is heteroskedasticity.

	Model without computer	Model with computer	
Statistic	Test statistic	Test statistic	
	(Probability)	(Probability)	
chi ²	958.62	962.88	
	(0.0000)	(0.0000)	

Note: (i) H_o: errors have are homoscedastic, H_A: errors are not homoscedastic; (ii) White test allows the heteroskedasticity process to be a function of one or more independent variables. It allows the independent variable to have a non-linear and interactive effect on the error variance.

Interpretation: There is heteroskedasticity

Graphical Check of Heteroskedasticity

Draft; not for citation

Normal PP Plot, Normal QQ Plot, and Distribution of Residuals for OLS Model without Computer

Normal PP Plot, Normal QQ Plot, and Distribution of Residuals for OLS Model with Computer

Note: (i) PP plot is more sensitive in the center; QQ plot is more sensitive at the two tails

Draft; not for citation Null hypothesis = errors normal Alternative hypothesis = errors not normal Decision rule: If p value < 0.05 then reject null hypothesis that errors are normal.

If p value > 0.05 then cannot reject null hypothesis that errors are normal.

Model without computer		Model with computer		
Variable	Residual	Residual		
W	0.98491	0.98579		
V	125.125	117.833		
Ζ	13.125	12.962		
Prob > z	0.00000	0.00000		

Note: (i) H_o: errors are normally distributed, H_A: errors are not normally distributed

Interpretation: The joint distribution of the errors is not normal.

Graphical Check of Outliers in OLS Models

Draft; not for citation

Summary of Post-estimation Diagnostic Tests

Test	Description	Result
Ramsey Regression Specification Error Test	Test of model specification	Model is incorrectly specified; there is at least one omitted variable
Link Test	Test of model specification	Model is incorrectly specified
Variance Inflation Factor	Test of multicollinearity	Perfect multicollinearity is somewhat likely
Breusch-Pagan (1979) and Cook-Weisberg (1983) Test	Test of heteroskedasticity	There is heteroskedasticity
White Test	Test of heteroskedasticity	There is heteroskedasticity
Shapiro Wilk Test	Test of normality of errors	The errors are not normally distributed

Results from Heckman Two-step Estimation

	Model witho	out computer	Model with computer		
Regression	Probit	Heckman	Probit	Heckman	
Variable	Inwage	Inwage	lnwage	Inwage	
education		0.0343627***		0.0302509***	
		(0.0010397)		(0.0010727)	
experience		0.0198216***		0.0203444***	
		(0.0007809)		(0.0007734)	
experience ²		-0.0002861***		-0.0002924***	
		(0.0000151)		(0.000015)	
computer				0.1702658***	
				(0.0123785)	
hours	0.0107224***		0.0107224^{***}		
	(0.0005879)		(0.0005879)		
assets	-0.0003627***		-0.0003627***		
	(0.0000306)		(0.0000306)		
married	-0.3196878***		-0.3196878***		
	(0.0171752)		(0.0171752)		
children	-0.0234653**		-0.0234653**		
	(0.00963)		(0.00963)		
CPI	-0.041563***		6.955875***		
	(0.00241)		(0.4395531)		
lambda		-0.1805037		-0.1558748	
		(0.0128445)		(0.0133838)	
Constant	6.955875***	7.480404***	6.955875***	7.467818***	
	(0.4395531)	(0.0181366)	(0.4395531)	(0.0182261)	
LR chi ²	1730.34		1730.34		
Wald chi ²		1794.51		2030.21	
Prob > chi ²	0.0000	0.0000	0.0000	0.0000	

Note: (i) Standard errors in parentheses (ii) *** p<0.01, ** p<0.05, * p<0.1

Summary of Results from Heckman Two-step Estimation

Threshold Level of Experience

Let us recall that our model specification was as follows:

 $ln(W_i) = b_0 + b_1S_i + b_2E_i + b_3E_i^2 + b_4C_i + b_5\lambda_i + u_i(2)$

Substituting the coefficients from the Heckman model with computer use, we get

 $\widehat{ln(W_i)} = 7.467818 + 0.0302509S_i + 0.0203444E_i + (-0.0002924)E_i^2 + 0.1702658C_i + (-0.1558748)\lambda_i + u_i$

Differentiating the equation with respect to experience we get

 $\frac{\partial W}{\partial E} = 0.0203444 - 0.0005848 E$

At the turning point the first derivative is zero, so we get

0.0203444 - 0.0005848 E = 0-0.0005848 E = -0.0203444 $E = \frac{0.0203444}{0.0005848}$ E = 34.78864569

Thus wages are maximized at 34 years of potential experience. The second derivative is negative, further confirming the inverted U shaped nature of the relationship.

Returns to education, experience, and computers

-Returns to education (cumulative) -Returns to experience (cumulative) -Returns to computer use

Draft; not for citation

4 9 4 6 N N 4 4 6 N N 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1+ Zs 22 s2 4 s e 4 s e 5 i 5 i 6 c 7	e X { {	D O M H G	9 { 2 # 2 #	K nh o X d d	~ AN&L &	
04 ÷Д h	- - - - - - - - - - - - - - - - - - -		$ \begin{array}{c} \mathbf{R} \\ \mathbf{S} \\ \mathbf$				a XX s vVH > oo	

- L

Gaps in the labour market of Bangladesh need to be bridged urgently

> Structural unemployment is now set to become the next big development challenge for Bangladesh

Education alone cannot bridge the gaps in the labour market

Computer skills are complementary to education, and can play an instrumental role in bridging the gaps in the labour market in Bangladesh

Draft; not for citation

Recommendations

STUDENTS: invest time in learning computer skills

TEACHERS: increase the use of computers in the classroom

EMPLOYERS: focus on workers' computer skills for capacity building

> GOVERNMENTS: allocate government resources for computer training

2 \mathbf{PI} т ≈ 2 \mathbb{R}^{n} \top . \mathbf{C} HANK 6 \odot 5 \mathbf{C} Y $\mathbf{4}$ ч https://cpd.org.bd Т 0 O S \mathbf{N} 8 \mathbf{O} Ş £ Т Ņ р 8 L $\stackrel{ m O}{4}$ cpd.org.bd **CPDBangladesh** і b \mathbf{h} cpdbc **Centre for Policy** \mathbf{Z} F Dialogue (CPD) h >J $\mathbb{K} \cup$ q Draft; not for citation K 9 Д, \mathbf{P}_{11}

ь

0

0

j

 \mathbb{R}

G

Zs

10

9

6

101